ESE-836 Li-ion and Next-Generation Batteries

Course Description

- 1. In recent years, energy storage has become one of the big challenges of our planet in order to utilize more renewable energy and to reduce fossil fuel consumption.
- 2. Electrochemical energy storage offers the advantage of electricity storage in the form of chemical energy. Both, the electrical and chemical energy use electrons to store the energy, thus offering less loss of energy and ultimately provide high efficiency.
- 3. Lithium-ion batteries (LIBs) are known as the highest energy and power densities devices and already been used in the portable electronics industry.
- Recently, LIBs are introduced in electric vehicles (EVs) which supply energy to the electric motors. However, for the use of EVs, more efficient LIBs with high energy and power densities are required.
- 5. There is also a need to develop next-generation battery systems for the readily availability of energy storage at different scale levels. For this, there is an ongoing trend to develop sodium-ion, zinc-ion, lithium-sulfur, and metal-air batteries.
- Sodium-ion batteries (SIBs) are getting much attraction due to similarities of LIBs as an affordable energy storage system. This course will focus on the recent development of SIBs.
- This course is proposed as an elective course for MS Energy Systems Engineering, MS Thermal Energy Engineering and MS Electrical Engineering (Power).

Educational Objectives

- 1. The objectives of this "Li-ion and Next-Generation Batteries" course are:
- 2. To understand the importance of LIBs.
- 3. To learn the basic working principle of LIBs.
- 4. To understand the important parameters of LIBs such as the selection and design of electrode materials.
- 5. To discuss how the performance of LIBs can be improved by controlling the parameters.
- 6. To learn the fabrication process and effect of cell design on performance.

- 7. To understand the electrical, mechanical and thermal behavior of LIBs.
- 8. To understand the reaction and degradation mechanism of LIBs under in-situ and ex-situ experiments.
- 9. To understand the importance and working principle of next-generation batteries.

<u>Outcomes</u>

- 1. The outcomes of this "Li-ion and Next-Generation Batteries" course are:
- 2. The students will be able to know the importance of the development of LIBs especially for the use of electric vehicles.
- 3. The students will become familiar with basic components and will learn how to improve the performance of LIBs.
- 4. The students will be able to know the important factors to determine the performance and reaction mechanism of electrodes in LIBs.
- 5. The students will get knowledge and the importance of developing next-generation batteries.

Contents

No.	Topics	Book	Contact
			Hours
1.	Li-ion batteries (LIBs)	А	6
	Importance of energy storage		
	 Introduction of LIBs and importance in electric 		
	vehicles (EVs)		
	Basic working principle and important components		
	 Important practical parameters of LIBs such as 		
	voltage and capacity.		
	The function of separator and electrolyte		
2.	Cathode materials		6
	Importance of developing cathode materials		
	 Cathodes materials and their types 		

	 Selection of cathode materials depending on 		
	capacity and voltage.		
	 De/intercalation and conversion reactions in 		
	cathodes		
	 Layered, olivine, and spinel cathodes 		
	 Cathode materials for electrical vehicles (EVs) 		
	 Performance enhancement strategies 		
3.	Anode materials	B&C	4.5
	Graphite and other carbonaceous anodes		
	 Silicon-based high capacity anodes 		
	 Ti-based long cycle life anodes 		
	 De/interaction, de/alloy, and conversion type 		
	anode materials		
	Determination of the lithium insertion/extraction		
	process in poor crystalline/amorphous anodes		
4.	Electrolyte and separator	A&D	4.5
	 Selection parameters for electrolyte 		
	 Non-aqueous organic liquid electrolytes 		
	Polymer electrolytes		
	Solid electrolyte for Solid State LIBs		
	Polymer separator		
	Glass fiber and other separators		
5.	Parameters affecting LIBs performance	A&B	3
	Temperature dependence performance of LIBs		
	 Fast charge-discharge and related polarization 		
	effect		
	 Introduction, advantages, basic reactions, 		
	applications		

6.	Electrochemical techniques to measure lithium	В	4.5
	diffusion		
	 Importance of measuring the lithium diffusion 		
	coefficient		
	Cyclic voltammetry (CV)		
	Electrochemical impedance spectroscopy (EIS)		
	 Galvanostatic intermittent titration technique 		
	(GITT)		
	Temperature-dependent diffusivity		
7.	Reaction and degradation mechanism	B&E	4.5
	• Introduction of and importance of developing in-		
	situ and ex-situ techniques		
	• In-situ XRD of electrode materials to probe the		
	structural changes		
	 In-situ X-ray absorption spectroscopy to 		
	investigate the local geometry of the electrode		
	Ex-situ TEM of electrodes to observe the surface		
	and bulk changes		
	 Investigating the degradation factors of LIBs such 		
	as thermal, structural, and gas evolution.		
8.	Next-generation batteries		9
	Recent development of LIBs		
	 Importance of developing next-generation 		
	batteries		
	 Introduction and development of SIBs 		
	High capacity layered cathode materials for SIBs		
	Development of anode materials		
	Solid state SIBs		
	Li-S batteries		
	Metal-air batteries		

	Dual ion Mg and Zn batteries					
	Flow batteries					
	Re-cycling of batteries					
9.	Lab work and workshops practice		3			
	 Demonstration of fabrication process of cells 					
	Total					

Recommended Reading (including Textbooks and Reference books).

S.	Title	Author(s)	Assigne	Books
No.			d	
			Code	
1.	Lithium Batteries,	Chrisstian Julien, Alain	А	Text
	Springer, 2016	Mauger, Ashok Vijh, Karim		
		Zaghib		
2.	Lithium Batteries	Bruno scrosati, K. M.	В	Text
	Advanced Technologies	Abraham, Walter Van		
	and Applications, John	Schalkwijk, Jusef Hassoun		
	Wiley & Sons, Inc., 2013 .			
3.	Lithium Batteries and	Robert A. Huggins	С	Referenc
	Other Electrochemical			е
	Storage System, Wiley,			
	2013			
4.	Advanced Batteries	Robert A. Huggins	D	Referenc
	Materials Science			е
	Aspects, Springer New			
	York, 2009.			
5.	The Lithium Air Battery:	Nobuyuki Imanishi, Alan	E	Referenc
	Fundamentals, Springer	C. Luntz, Peter G. Bruce.		е
	New York, 2014 .			

6.	Latest research	papers	published	in	peer-reviewed	F	Referenc
	scientific journals						е